elpub2002 Proceedings — J. A. Carvalho et. al. (Eds.) — VWF Berlin, 2002

Improving the Access to XML Contents
of Large Electronic Publications

V. Fresno-Ferndndez, R. Martinez-Unanue, M. Paredes-Velasco,
J. Urquiza-Fuentes, and J. A. Velazquez-Iturbide

ESCET, Universidad Rey Juan Carlos
C/ Tulipan s/n, 28933 Moéstoles -Madrid-
{v.fresno, r.martinez, m.paredes, j.urquiza, a.velazquez}@escet.urjc.es

Abstract. In this paper we present a technique to access the contents of
large XML documents. This technique can be applied to domains where
large amounts of data are handled, on condition that those contents only
require to be updated in a scheduled or sporadic way. We have implemented
it in a system, named ALEP (Access to XML contents of Large Electronic
Publications). First, ALEP preprocess the XML document, then it is used
together with DOM APIL. One of their advantages is that it can be integrated
into any software for management XML electronic publications. We have
compared ALEP with DOM and SAX API’s improving both, time and
space measures, with large documents of size greater than 18 MB megabytes
acceding to a hundred of XML elements.

1 Introduction

Nowadays, XML [1] and its associated technologies are more and more used in
Electronic Publishing. These technologies give favorable solutions to specific needs
in many circumstances; however, they may also be inadequate in other situations.
Thus, when we work with large XML documents, an internal representation of the
contents and structure based on its complete storage in memory can be inefficient.
In addition, if time of data access is a critical factor and many accesses to a large
XML document are made, an API providing sequential access does not guarantee
acceptable response times. A partial solution comes from technologies that focus
on query languages with features developed by the database research community
for semistructured data.




Improving the Access to XML Contents of Large Electronic Publications 213

We have developed a general and efficient technique to access the contents of large
XML documents that takes advantage of the exiting XML technologies. In our
approach, we do not need a data structure storing the whole contents in memory,
but a tree that represents the document internal structure. Every node of the tree
only stores the information necessary to access directly those contents. On the
one hand, the tree structure is obtained from an analysis of the XML document.
On the other hand, the node information is determined from its location within
the document contents. We have implemented it as a system capable of creating
a direct access structure. This system, named ALEP (Access to XML contents of
Large Electronic Publications), can be integrated into any software for management
XML electronic publications, and it is used together with DOM APL

Next, main access methods to XML contents are briefly described.

1.1 Main Access Methods to XML Contents

DOM (Document Object Model) [2] describes a way to process, access and
manipulate content of XML documents. Every XML document is a hierarchy of
elements. DOM builds a tree representing the hierarchical structure of the XML
document where elements and entities of the XML document are nodes of the tree.

The programmer who uses a DOM parser can access to the contents of the XML
document as easy as accessing a tree structure. After parsing a XML document,
a DOM parser returns the root node of the tree, which is the root element of the
XML document. The DOM API [2] details how to manipulate a XML document
in terms of nodes.

The work of a DOM parser consists on three steps: first it parses the document,
ensuring the validity a correctness, then it stores the tree structure in memory
and returns the root node, and finally, it returns everything the programmer asks
using the DOM API. At the second step, the DOM parser stores the whole tree
in memory, so accessing to the first node has the same cost as accessing the last
node. There is a variant from DOM, called lazy DOM, which stores a node and its
child nodes in memory only when the node is accessed, so in some cases it will be
more efficient.

SAX [3] is a parser for XML documents based on capture and processing of
events. Therefore, when we are working with a SAX parser, XML document infor-
mation is a sequence of calls and events. There are two roles in this APL events
producer and events consumer or events handler. The events producer is very sim-
ple: it is a call to a procedure of a class of some commercial library. The events
consumer is written by the application programmer. When an event happens, this
consumer will decide what to do. The producer will produce an event for every
open tag, every close tag, every #PCDATA and DATA section. Besides, it also
produces events for processing instructions, DTDs, comments, etc.



214 Fresno-Fernandez & Martinez-Unanue & Paredes-Velasco et. al.

SAX consumes little memory, this is its main advantage. This memory expensive
does not change between big or small documents. Another advantage is its data
structure flexibility. DOM obligates you to use a tree structure to represent infor-
mation contained in XML document, whereas SAX allows you to use your API to
create data structure. However, it presents a disadvantage: SAX APIT programming
is more complicated because you have to manage your own data structure.

XQL and XML-QL are both query languages of XML contents. XQL [4] was
an early proposal for a simple query language designed specifically for XML. The
basic construects of XQL correspond directly to the basic structures of XML, and
XQL is closely related to XPath, the common locator syntax used by XSL and
XPointers. Since queries, transformation patterns, and links are all based on pat-
terns in structures found in possible XML documents, a common model for the
pattern language used in these three applications is possible. XML-QL ([5], [6])
is a query language for XML data to allow extraction, transformation and integra-
tion of XML data. It is designed to express queries to extract pieces of data from
XML documents; it can express transformations to map XML data between DTDs
and integrate XML data from different sources. The language has some constructs
similar to SQL, and borrows features of query languages recently developed by the
database research community for semistructured data.

1.2 Use Points in Large Publications

DOM uses a lot of memory, spends few time and is easy to use. Using a DOM parser
with big documents will result on a great amount of memory used, because DOM
stores the whole tree in memory; so in terms of memory usage DOM is unefficient.
In terms of time going from one node to another, DOM is very fast because the
tree is stored in memory, and going to a node is the same as read other memory
address. In terms of effort spent on learning DOM API, DOM is easy because DOM
builds a tree structure, which is a data structure known by every programmer, and
very easy to use.

When we are working with big documents, SAX presents some deficiencies or
disadvantages. In first place, SAX parser does not provide random access to XML
data. If you want to go from a node to another one, you always must start from
the root node. In large XML documents, this characteristic causes that the appli-
cation is very slow because you must repeat parser process every time. An other
disadvantages is that you have to provide tasks and actions in order to manage the
elements order in your XML document.

Finally, the query languages designed specifically for XML are appropriate for
permitting open queries about the contents of XML documents, which can be ex-
pressed by means of patterns or constructs of such query languages. However, some
domains and applications could not need such potentiality, owing to all possible
contents access are planned in some way.




Improving the Access to XML Contents of Large Electronic Publications 215

The organization of the paper is as follows: Section 2 introduces our access method
ALEP; in Section 3 we present the experimental results; finally, Section 4 summa-
rizes the conclusions drawn from the work carried out.

2 The Access Method ALEP

2.1 Motivation

We have involved in a project supported by the Spanish Research Agency which
have as one of its main goals the development of an electronic book about computer
programming. We thought that the functionalities and facilities we had designed
could be solved with XML and appropriate technologies. Such e-book should be able
to offer at least a sophisticated navigation system, based on different techniques:
navigation controls, search facilities, user-defined bookmarks, ...These facilities
require an efficient access to XML contents of the e-book. The efficiency we are
talking about is referred to both, time and space. On the one hand, navigation
amongst contents must be as fast as possible. On the other hand, the necessary
RAM memory to run the e-book application must not be greater than the standard
memory of a typical PC existing in any house or in any practice room.

Once we fixed our requirements, we identified the contents characteristics of
this e-book in order to take advantages of the later. From this point of view, the
main contents characteristic is its potential static nature. The chapter, sections,
examples, exercises, that is, the real contents, will be always the same; although
different users can be have different views of those contents. Different users can
customize them by means of different classes of annotations. Nevertheless, cus-
tomisations do not affect what we have called real contents because they can be
registered separately.

The potential static nature of the contents, permits improve the access effi-
ciency by means of the use of information about the localization of those contents.
In next subsections our approach and the system that implemented it are detailed.
This system can be applied to domains where large amounts of data are handled.
These data need not be static, but require to be updated in a scheduled or spo-
radic way. Some others examples of these domains are: e-books, technical manuals,
administrative and legal documentation, warehouses, or exercises collections.

2.2 ALEP Description

We propose a general and efficient technique, called ALEP, which this main is to
overcome the limitations that DOM and SAX presents when large XML contents
are handled and many accesses are needed.

ALEP tries to make use of advantages of the method DOM in time reducing
its limitations in memory. This method works in two phases:



216 Fresno-Fernandez & Martinez-Unanue & Paredes-Velasco et. al.

1. In a preprocessing, the Direct Access Document (DAD) associated to the XML
document is created. DAD is another document with the same hierarchical
structure as the original document, where #PCDATA contents are exchanged
by the information needed to access them in the original document. The rest
of the original document does not change. This information is the position in
the original document of the first character of the content, and the number
of characters until the end of the content. In this way, a new document is
generated with the same structure that the original, but in this case some of
their elements are pointers to the contents of the original XML document.

2. Once DAD has been generated, as it is a XML document, it can be processed
with DOM or SAX. We use DOM because is very easy and powerful. DOM
stores all the DAD document structure and content in memory; however, the
content now is the minimum necessary to find the original XML content, so
the memory occupied is the minimum necessary to process the document as
it was the original one. A method is added to the XML application in order
to recover the real content from the original XML document using the DAD
pointers.

One of the advantages of DAD is that the programmer have not to learn a new
method to process XML documents, because he can use DOM to access DAD nodes.
When the programmer asks the #PCDATA content of an element our system do:
(1) get the beginning and the length of the content, (2) get this part of the original
document and return it to the programmer.

We have developed ALEP using Java as the programming language and Xerces
[7] as the XML parser.

3 Experimental Results

3.1 Evaluation metrics

An XML contents handle system must be evaluated in terms of two fundamental
factors: the time employed in the access and the memory needed. We introduce
a effectiveness evaluation function in terms of those resources. A relative evalua-
tion between two systems could be made in order to determine whether a specific
system can be more effective than other one. An objectivist comparison need a
range where to establish such comparison. We propose an effectiveness evaluation
function enclosed in the interval (0, 1), which take the following expression:

f(t,Ram)=1— expm’{m

where k is a constant that depends on the units of the variables. As an example,
when time is measured in seconds and memory in MegaBytes, the constant k£ must

S b




Improving the Access to XML Contents of Large Electronic Publications 217

take a value 100. In this way, if a system is evaluated with a value near to 1 then
can be considered like an efficient system, where exists a good ratio between the
time and the memory employed. The function what we introduce here can be used
to evaluate any computer system where a inverse relation in time and memory are
wanted.

Basing on this evaluation function, an empirical study is carried out in order
to compare the behaviors of the DOM, SAX and ALEP systems to access to the
contents of the XML document.

3.2 Tests Description

The test has been developed in a processor Pentium III workstation with 128 MG
Ram memory. The operating system used has been SuSE Linux 7.3. The XML
documents we have work with are documents validated with the DocBooK DTD.
The proof set was generated from a XML document corresponding to a complete
chapter of an e-book for teaching computer programming.

The experiments have included different documents size. The documents size
varies from 81 KB to 20 MB. The number of elements accessed in each test is
100. We have chosen this value because in the e-book applications domain is usual
access to more than one page; so the access to a group of 10 pages (with paragraphs,
images, code, references, sections, examples, . . . ) we have calculate that can be need
the access to 100 elements approximately.

‘We have compared the behavior of the DOM, SAX and ALEP systems with
respect to time and memory. In addition we use a function to evaluate both time
and memory.

3.3 Results

The results of the experiments with respect to the evaluation function, time and
memory can be seen in Figure 1, Figure 2, and Figure 3 respectively.

With documents equal or bigger than 12 MB, DOM API produce a memory
lack in this computer. Lazy DOM produce similar memory lack with documents
equal or bigger than 18 MB. ALEP is capable of processing larger XML documents
than DOM and Lazy DOM are. SAX is also capable to manage large documents,
however it needs so much time that it could be inoperative in several applications.

Figure 2 relates memory needed with respect to document size. It can be seen
that except SAX, which has an almost constant behavior, DOM and Lazy DOM
increase memory requirement faster than ALEP.

With respect to the time, Figure 3 shows the experimental results. Clearly SAX
presents the worst behavior; DOM and Lazy DOM require less time that ALEP,
however the growth is very similar in these three cases.



218 Fresno-Fernandez & Martinez-Unanue & Paredes-Velasco et. al.

Lazy DOM shows the best behavior relating time and memory (see Figure 1) when
the memory computer is enough to process the document. ALEP is the one which
manages largest documents in a feasible time in a computational point of view.

f(t.Ram)
01 1
=] o
0,08 t,Ram)=1-e\""*" =
JiERam =1 —ALEP
0,07 1 - LacyDOM
0,08 -
005 V.
004{ !
0,03

0,02 A
0,01 A

0 T T T “ T T T T 1
10000 12000 14000 16000 18000 20000 22000 24000 26000 28000
(KB)

Fig. 1. Behavior respect to the time and memory.

4 Conclusions and Future Work

We have carried out and evaluation of the two main APISs (DOM and SAX), and
our system ALEP with the contents of an e-book about computer programming
with the DocBooK DTD. ALEP preprocess the XML document for creating a
Direct Access Document which is used with DOM API.

The experiments have included different XML documents size. The results show
that ALEP process larger documents than DOM and Lazy DOM, and ALEP does
it in less time than SAX does.

ALEP can be applied to any domain where large amounts of data are handled.
Because of the ALEP preprocess, the main requirement is that the contents or
data need to be updated in a scheduled or sporadic way. Some examples of these
domains are: e-books, technical manuals, administrative and legal documentation,
warehouses, or exercises collections.

With regard to the future, we will focus on reducing the memory requirement of
ALEP without increase time, in order to improve efficiency in the e-book domain.
We will carry out more experiments taking into account the ratio between number
of tags and its contents.




Improving the Access to XML Contents of Large Electronic Publications 219

(&B)
100 -
90 —- DOM
80 --- LacyDOM
70 — SAX
: —ALEP
60 4 /— >
50 i . e
'/ s
40 - 04 ":’
,/ 2 -
il A
30 B
20 - LA
R
10 { &~
0 T T T T T
0 5000 10000 15000 20000 25000 ®B)
Fig. 2. Behavior respect to the memory.
®
1000 -
900 - =
505 - -~ LacyDOM
700 S
—ALEP
600 - .
500 -
400 -
300 -
200 -
100 /
PN i RS
0 small ‘ ‘ : -
0 5000 10000 15000 20000 25000 &B)

Fig. 3. Behavior respect to the time.




220 Fresno-Fernandez & Martinez-Unanue & Paredes-Velasco et. al.
Acknowledgements

This research is being supported by the Spanish Research Agency, project LIBRE,
TIC-2000-1413.

References

Extensible Markup Language (XML). http://www.w3.org/XML/, 1998.

Document Object Model (DOM). http://www.w3c.org/DOM/.

D. Brownell. SAX2. O’Reilly & Associates, 2002.

E. Derksen, P. Fankhauser, E. Howland, G. Huck, I. Macherius, M. Murata, M.

Resnick, H. Schning. “XQL (XML Query Language)”.

http://www.ibiblio.org/xql/xql-proposal.html, 1999.

5. A. Deutsch, M. Fernndez, D. Florescu, A. Levy, D. Suciu. “XML-QL: A Query Lan-
guage for XML”. http://www.w3.org/TR/NOTE-xml-ql/, 1998.

6. A. Deutsch, M. Fernndez, D. Florescu, A. Levy, D. Maier, D. Suciu. “Querying XML
Data”. IEEE DATA Engineering Bulletin, 22(3), 1999.

7. Xerces Java Parser. http://xml.apache.org/xerces-j/index.html.

el o




