elpub2002 Proceedings — J. A. Carvalho et. al. (Eds.) — VWF Berlin, 2002

Implementing RBAC Policies in a Web Server

Daniel Sanz, Paloma Diaz, and Ignacio Aedo

Laboratorio DEI. Departamento de Informatica.
Universidad Carlos 11T de Madrid
Avda. de la Universidad, 30, 28911 Leganés. Spain.
{dsanz@dei.inf, pdp@inf, aedoQia}.uc3m.es

Abstract. Security is a key requirement, in multi-user hypermedia systems,
where the ability of different users to access and manipulate the information
depend on their needs and responsibilities. If security policies are specified
in terms of individual users and low-level abstractions not related to the
hypermedia domain, security administration becomes complex and prone
to error. This paper describes how an RBAC (Role Based Access Control)
module is integrated into a web server that is treated as a hypermedia sys-
tem instead of as a set of files, programs and network protocols. This implies
the definition of a set of hypermedia related operations that authorised roles
can execute on the system objects.

1 Introduction

Hyperdocuments, widely represented by web-based applications, have experienced
a considerable growth in the last years, offering more and more services and con-
tents. Indeed, web sites are used on private networks to provide more specific
services since the portability of web browsers makes access to electronic informa-
tion consistent and concurrent by all users [1]. Hypermedia applications should
offer different views of the same information and different manipulation abilities in
order to fit more specific users needs and responsibilities in a particular context [3].
In order to be efficient, security policies have to be defined in terms of nodes, con-
tents, links and, in summary, hypermedia components. Such security policies can
follow different approaches, including DAC (Discretionary Access Control), MAC
(Mandatory Access Control) and RBAC (Role Based Access Control) models, be-
ing the latter a quite convenient solution to make security management a more
efficient and less prone to error task [6].




298 Daniel Sanz & Paloma Diaz & Ignacio Aedo

This paper addresses how to integrate an RBAC module into the Apache httpd web
server. This server has been chosen to test our ideas due to its powerful and modular
design, widespread use, support for most common platforms, high configurability,
full source code availability and extensibility.

Two major related questions need to be discussed: the hypermedia model and
the security model assumed in the implementation of the module. A third question
is also considered: performance should not be damaged, so the level of efficiency
(mainly considered as the response time) should be kept as similar as possible to
the one offered by the server without the RBAC module.

2 Related Works

One of the most common problems in network systems management is the complex-
ity of the security administration, due to the difficulty of managing authorizations
in an efficient way. Traditional access policies (such as DAC or MAC) seem in-
sufficient for meeting today’s security needs in most hypermedia and web systems
since they are chiefly focused on group-based policies. Thus, authorizations are as-
signed in terms of users, so as the number of users becomes larger, the associations
user/authorizations tends to be unmanageable and security management becomes
a laborious and prone to error tasks. Role based access control (RBAC) is a term
used to refer to a class of security mechanisms that regulate the access to resources
through organizational identities called roles [7]. A role gathers a set of allowed
activities for the users holding such a role. Instead of granting privileges on an
individual basis, privileges are assigned to roles, so users can be added or removed
from role membership according to their job functions or position within an orga-
nization without modifying the access structure. Although user’s responsibilities
are expected to change over time, the authority assigned to roles is normally much
more stable. Moreover, as new applications and operations are incorporated to the
system, roles can be assigned or revoked permissions as needed.

This paper describes how an RBAC model described in [2] is integrated into a
web server. Thus, classical RBAC concepts and models [9, 6,5, 8, 7] have provided
the basis for some key concepts of the security model assumed by the implemented
module as it will be discussed in the next section. :

The integration of RBAC policies into web servers has been already discussed
in [4,1]. Despite of performance considerations, the proposed design maps the op-
erations directly into HI'T'P methods, takes URLs as the system objects and trans-
lates the URL to filenames. Operations are tied to the transmission protocol, so
abstract manipulation abilities over the hyperdocument are not considered. The
object concept does not take into account relationships among objects, nor con-
sider other hypermedia elements, such as links or contents, so that multilevel access
policies can not be supported. What we propose in this paper is to treat the web

e . NI




Implementing RBAC policies in a web server 299

site as a hypermedia system instead of as a set of files, programs and network pro-
tocols and, consequently, to specify security rules in terms of hypermedia elements
and operations with a view to integrating security into the whole hypermedia or
web engineering process.

3 MARAH: An RBAC Model for Hypermedia

The security model assumes some well-known security principles:

1. Well-formed transactions: users manipulate information only through a
number of controlled programs, which are the operations of the model (see
below).

2. Authenticated users: only authorised users can perform operations.

3. Least Privilege: operations have only those privileges they require to accom-
plish their objectives, and users are granted only the abilities they need to do
their work.

4. Delegation of authority: security management is not centralised; some ac-
tions which are not too critical can be delegated to the users responsibility.

5. Positive and negative authorizations: the model supports both positive
authorizations (that grant access) as well as negative ones (that deny access).
When the number of users is unmanageable, as happens with most web-based
applications, both mechanisms are desirable to lighten the security management
tasks.

6. Data abstraction: security categories are defined in terms of manipulations
abilities pertaining to the application domain.

7. Separation of duties: sensitive tasks must require the action of mutually
exclusive subjects, in order to avoid collaboration between various job related
capabilities.

The security model is summarised in Tab. 1. Subjects are active entities that per-
form actions on objects (passive entities). The operations are the actions which can
be done on the hyperdocument (e.g. managing nodes or links). The manipulation
abilities supported in the application are the security categories, that define a par-
tial order relationship, where each category adds permissions for manipulating the
hyperdocument to the previous one. Three access categories are defined: browsing to
retrieve objects; personalising to browse and create a personalised version of an ob-
ject, for private use of a role or team; and editing to browse, personalise and modify
objects. The least privilege principle leads to define the classification of operations
and the classification of objects. While the former specifies the minimum category
required to perform an operation, the latter states the most permissive operation
an object allows. The security policy is defined in terms of the confidentiality and
clearance functions. The confidentiality relationship establishes a negative ACL for




300 Daniel Sanz & Paloma Diaz & Ignacio Aedo

each object. The clearance relationships allow to define context-dependent subject
authorizations, that is, to specify manipulation abilities for some specific subjects
with respect to some specific objects. The separation of duty is a symmetric rela-
tion that defines mutually exclusive subjects (that is, those roles that cannot be
assumed concurrently by the same user). Finally, the transition function determines
if an operation initiated by a subject is or not safe. Next subsections describe some
relevant features of this model.

Table 1. Formal specification of the security model

Model Element Specification
Subjects S={s;|i=1,...,n(n e N)}
Objects O = o | i =100, me (EN)]
Operations Op={op: |i=1,...,p (peN)}
Security Categories Sc={sc; |i=1,...,q sci—1 C sci,Vsc; € Se, (g € N)}
Separation of Duty SD = {{si,8;)| 1, =Li»cosm 1 4, (0 € N)}
Classification of Opera- | w: Op — Sc
tions
Classification of Objects | d : O — Se
Confidentiality P:0 — S
Clearance ¢:0x8— Sc
Transition P:0px O™ x 88— O™, (n,meN)

Using roles and teams to model the concept of subject. Subject modelling
considers roles, teams and users. Roles are job functions or organizational positions,
while teams gather a set of roles, whether to represent groups of users or just to
simplify the security management tasks. Individual users must be assigned to one
or more roles and they cannot belong to teams directly but take part in them
through the roles they assume.

The roles set is a partial order, defined with two irreflexive, transitive and
antisymmetric relations, and it is represented as a DAG (Directed Acyclic Graph).
The two role composition mechanisms used to define hierarchies are: generalization
(“is-a” relationship) and aggregation (“whole-part” relationship). The former allows
to establish the relationship among a general role and its specializations, while the
latter is used to define the composition of teams. Generalization can be exclusive,
what implies that a user will be only allowed to be assume one of the child roles.
Users can be assigned to general roles, since generalization hierarchies are partial,
whereas aggregation are total.

T ol e




Implementing RBAC policies in a web server 301

Controlling the users allocation to roles and teams. There are two issues
to take into account when assigning specific users to a role: (1) if the role has
constraints in the number of allocations and (2) if there are roles who cannot be
held by the same user at the same time.

Concerning the first issue, teams and roles support the definition of cardinalities,
both minimum and maximum. Membership bound remains unconstrained if the
value is unspecified. Let 7| be the minimum cardinality of role r, 1,1 the maximum
and #, the number of directly assigned users of r. Then, the number of users of r
are calculated as follows:

N = F#r + Z Tt (1)

r'-r

where > refers to every child role of r, whether aggregated or generalised. Note
that . = #£, for leaf roles, while #, = 0 for teams. Some consistency constraints
are applied in order to ensure a proper cardinality definition, taking into account
if the hierarchy is partial or total. For example, the value of 1,1 of a member of a
team cannot be higher than the value of 7,1 for the team itself.

To deal with the second constraint, we use the separation of duties as a sym-
metric relationship that involves pairs of mutually exclusive roles. The static sepa-
ration of duty (SSD) assures that no user is assigned to two exclusive roles, while
the dynamic separation of duty (DSD) allows this assignation, but avoiding the
simultaneous use of the exclusive roles by the same user. The separation of duties
is propagated to every child role.

Propagating authorizations in the subjects hierarchies. Subjects are then
defined by means of a hierarchy of roles and teams, an structure that can be
used to propagate authorizations and reduce the security management efforts. The
following inheritance rules are defined [2]:

1. Direct propagation of authorization: Each role inherits the permissions given
by the confidentiality and clearance relationships that apply to its parents.

2. Authorization propagation in nested relationships: If there are nested general-
izations, the child assumes the security rules that apply to the most specialised
role, that is, to its immediate ancestor.

3. Authorization propagation in parallel relationships: If a child role is generalised
by several alternative ones, it assumes the most permissive authorization.

4. Direct assignment of authorization: If a role takes part in a team and has
no authorization, neither directly assigned nor inherited, it assumes the team
authorization.

5. Authorization overriding: Direct propagation is inhibited if the child role is
explicitly assigned a permission for the same object.

~ il al




302 Daniel Sanz & Paloma Diaz & Ignacio Aedo

Objects composition mechanisms. Object modelling is also based on gen-
eralizations and aggregations, with the purpose of gathering the hyperdocument’s
structure and semantics [3]. The object set has the same properties than the role set.
The concept of domain allows hierarchical structures to be used as objects them-
selves: a domain of an object o contains o, the domain of the objects o' aggregated
by o and the domain of the objects 0" generalised by o. Each hyperdocument has
a root domain representing the hyperdocument itself. In practise, domains allows
objects to be applied the above inheritance rules with respect to the classification
of objects (see Tab. 1).

4 Implementation of the RBAC Module

This section describes the implementation of an RBAC module that has been
embedded into the Apache httpd web server. First, we will discuss how the security
model is instantiated to the web domain, analysing some key decisions such as what
is an object, how to name entities or how to ensure a proper object manipulation.
Then, the system architecture is described.

Objects. Web servers do not explicitly distinguish between nodes and contents,
a necessary separation to support multilevel policies. In the module, we have con-
sidered that when an HTML tag is used to refer to or to embed elements (e.g.
links and images respectively), such elements are also considered as objects that
inherit the properties of the referred element, and are detected automatically. Non
HTML contents (e.g. images) are treated as a whole. This facilitates the manage-
ment, because objects are closely related with files, so the granularity level seems
reasonable. Indeed, objects are identified with the filename of the resource, what
hides objects names to users, who will refer to them by the URL, and can reduce
the number of objects when aliases are defined. The security administrator needs
to define the object name, the hierarchical relationships it has with other objects,
its security category (4), and the set of roles with denied access (10). § function is
propagated through the object DAG according to rules defined above. Thus, every
object must have defined 4. The ¢ function works slightly different:

Ye)=0—d)= |J %), (2)
P
L !T®ﬂ-0
where o = o refers to o' 7 o if 3 o. If not, refers to o’ “0;

Users. The users set is directly taken from the Apache database since authentica-
tion will be delegated to the server instead of being part of the RBAC module. Once

Posm-ia - W




Implementing RBAC policies in a web server 303

the server and the browser have established how to authenticate users, the module
asks Apache what user is involved when a request arrives. The security administra-
tor should consider only one authentication realm for all the RBAC controlled web
space. The specification of the RBAC user set must be in conformance with the
users defined in Apache, because the module needs a defined user, while Apache
needs to authenticate it. Groups and ACLs are overridden by the RBAC module.
The security administrator only needs to define the user name and the list of her
possible roles.

Roles. The security administrator defines the role set specifying the role name,
cardinalities, hierarchical relationships (including exclusive generalizations), the
SSD related roles and the clearances for objects (¢). The SSD relationship only
needs to be defined in one role, due to its symmetry. The exclusive generalizations
are implemented by adding an SSD relation between every pair of child roles.
In order to simplify the access to permissions, the nACLs are transformed into
negative clearances, that is, Vo, Vr € 1(0) = ¢(r,0) ="denied”. Negative clearances
are propagated with maximum priority, so the nACL is inherited too through the
roles hierarchy. After this process, every role has defined a clearance for each object.

Operations. In order to provide an extensible and abstract operation set, the use
of HT'TP methods is avoided. The operation is derived from the URL as follows:
if the URL contains a query, the identifier “rbac_op” indicates the name of the
operation. In other case, the “browse” operation is assumed. This naming scheme
does not interfere with other parts of the URL, provides independence with respect
to HT'TP methods, and allows to easily add new operations in the future. The
supported operation set is defined by the module, who is responsible for defining a
proper classification of operations. Each operation defines a handler that provides
all operation functionality.

RBAC system architecture. The system architecture is depicted in Fig. 1, that
describes the Apache request cycle, focusing on the RBAC phase. The modular
design of the request loop allows to modify the behaviour of the server at any stage
of the cycle, leaving the rest untouched. Like [4,1], all processing is done in the
server, so any web browser can be used.

Note that tasks such as mapping URLs to filenames, checking access and determin-
ing the MIME type of the document are performed by Apache before the RBAC
module is initiated. When RBAC starts, Apache has determined all relevant infor-
mation about the request, so the only responsibility for RBAC module is preparing
a response for the user according to the security rules. Again, the task of sending
the response to the browser is better performed by the Apache handlers. In the




304 Daniel Sanz & Paloma Diaz & Ignacio Aedo

User
Request

Apache

o EBACModge o n

web
contents

S

Fig. 1. System architecture

figure, dotted arrows represent the main request flow. The software components
interactions are shown with thin arrows, and are described in Tab. 2.

The key concept in the architecture is the ability of the access checker for executing
one operation for each user request. Even if the request is not allowed, the “denied”
operation prepares a message with the reasons of the denial. Each operation can
register its own functions for filtering the contents, so that the operation handler
may use them. Although the operation is determined by the URL query, sometimes
the HT'TP method helps to know the phase of execution. When editing, the GET
method means the user has requested to edit o, so the edition form is prepared
with the fragments of o that can be edited. When the user finishes, the form is
submitted, and the server executes again the “edit” operation on o, but now the
method is POST, so the edition handler now reads the request body and uses other
content processor in order to ensure that the incoming contents are allowed. This
avoids, for example, to put a link to an object the user can’t edit.

In order to enforce the security rules, the “browse” handler takes into account
the dynamic nature of web. The operation provides generic support for dynamic
web generation technologies (e.g. CGI, SSI, index generation), using a three phase
filtering scheme that avoids the dynamic inclusion of forbidden elements not present
in the original file.

5 Conclusions

The experience gained during the implementation of the module demonstrates that
RBAC models can be incorporated into the normal behaviour of the web server
without a considerable degradation of the level of service. The complexity of the
model does not affect the response time, assuming that all properties of the different




Implementing RBAC policies in a web server 305

Table 2. Main elements of RBAC system

Element Description

Access checker It implements @, determining if a request is or not
allowed. If request comes from the user, the proper
operation is executed. The most permissive role of
the user is taken as argument of 6.

Mapper This component provides independence to the
access checker by means of a mapping between
RBAC identifiers and web-related concepts.

RBAC entities Implements the concepts of object, role, user,
clearance, operation and security category. Each
one provides a consistent set of primitives for its
manipulation: add, get, modify and get the value
of some properties.

Content Processors Operations use the content processors in order to
prepare a response that respect the security rules.
Objects are filtered, in order to detect and skip the
elements (object or references) whose requested
operation cannot be performed by the user. For
example, an user must have “edit” clearance for o
in order to be allowed by the edition processor to
modify any link to o embedded in other objects.
Content processors needs to check the access abil-
ities of each object involved in a content, counting
on the help of the mapper and access checker.

Model Composition Rules | This component ensures the correct construction
of the model. It performs all propagation mecha-
nisms among RBAC entities as well as the consis-
tency tests.

Configuration It reads the configuration file, creating the RBAC
model. Then, the model rules are applied. This
component is executed when the server starts up,
so once the server is ready for accepting requests,
all model properties have been computed what
makes the access permission time independent of
the model complexity. If the model is not well-
formed, errors are stored in the Apache log file,
and the server does not start up.




306 Daniel Sanz & Paloma Diaz & Ignacio Aedo

entities have been computed during the server startup process, so new constraints
and relationships can be added in the future for improving the model.

Acknowledgements

This work is part of the MARAH project funded by the “Direccién General de
Investigacién de la Comunidad Auténoma de Madrid y FSE” (07T/0012/2001).

References

1. John Barkley, Anthony Cincotta, David Ferraiolo, Serban Gavrilla, and Richard Kuhn.
Role based access control for the world wide web. In 20" National Computer Security
Conference, 1997.

2. Paloma Diaz, Ignacio Aedo, and Fivos Panetsos. Modelling security policies in hyper-
media and web-based applications. In San Murugesan and Yoghesh Deshpande, editors,
WebEngineering: Managing diversity and complexity of web application development,
pages 90104. Springer Verlag (LNCS 2016), 2001.

3. Paloma Diaz, Ignacio Aedo, and Fivos Panetsos. Modelling the dynamic behavior of
hypermedia applications. IEEE Transactions on Software Engineering, 27(6):550572,
June 2001.

4. David Ferraiolo, John Barkley, and Richard Kuhn. A role-based access control model
and reference implementation within a corporate intranet. ACM Transactions on In-
formation Systems Security, 1(2):3464, February 1999.

5. David Ferraiolo, Janet Cugini, and Richard Kuhn. Role-based access control (rbac):
Features and motivations. In Proceedings, Annual Computer Security Applications
Conference, IEEE Computer Society Press, 1995.

6. David Ferraiolo and Richard Kuhn. Role-based access control. In 15" NIST-NCSC
National Computer Security Conference, pages 554563, 1992.

7. W. A. Jansen. Inheritance properties of role hierarchies. In 21°* National Information
Systems Security Conference, October 6-9 1998.

8. W. A. Jansen. A revised model for role-based access control. Technical Report NIST-
IR 6192, National Institute of Standards and Technology, Gaithesburg, Maryland, July
1998.

9. Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-
based access control models. IEEE Computer, 29(2):3847, February 1996.

T T & e N



