elpub2002 Proceedings — J. A. Carvalho et. al. (Eds.) — VWF Berlin, 2002

Continuous On-Line Validation of Web Services

André Rocha!, Giuseppe Valetto?, Elio Paschetta?, and Seppo Heikkinen®

1 Portugal Telecom Inovagio, Porto, Portugal
ACRocha@ptinovacao.pt
2 Telecom Italia Lab, Turin, Italy
{Giuseppe.Valetto, Elio.Paschetta}@tilab.com
% Elisa Communications, Tampere, Finland
Seppo.Heikkinen@elisa.fi

Abstract. The main objectives of the work herein presented were to de-
fine and build a platform for workflow-based continuous on-line validation
of systems and to study its application to an e-business marketplace website
implemented with the emerging Web Services technology, by many consid-
ered the new revolution in the world wide web context. This work took
place in the form of one of the case studies developed in the Eurescom
project P1108: “Workflow-based on-line validation of complex component
based Internet services”.

1 Introduction

The main purpose of Eurescom project P1108 — “Workflow-based on-line validation
of complex component based Internet services” — was to study the use of continuous
on-line validation techniques with deployed component-based services, as opposed
to the use of traditional off-line, pre-deployment validation methods. Several key
motivating factors were identified: component-based techniques are the key to the
development and provisioning of services; validation is the key to quality of services;
high-quality service provisioning is the key to medium and long-term competitive
advantage.

Part of this work consisted in defining and building (by using mainly freely-
available open-source tools) a platform for continuous on-line validation of systems
(COLV in the remainder), which was then applied to a set of different target
systems: an active firewall, a multi-channel instant messenger system and an e-
business marketplace implemented with the Web Services technology. This paper
only reports the lessons learnt from the latter case study.

Continuous On-Line Validation of Web Services Rirand

A travel agency service, accessible through a web interface, is the scenario for the
marketplace site. Flight and hotel reservations are the two kinds of functionality
made available by the travel agency (other possible types of services would be for
instance car rental or cruise reservation). The travel agency component works as a
marketplace, in the sense that, instead of implementing flight and hotel reservations
on its own, it requests them to other pre-existing and specialised service providers,
mediating and combining them to come up with the composed product requested
by the user. Therefore, specific web services for flight and hotel reservation are
also part of the system. In the remaining sections of this paper several issues are
discussed. Section 2 addresses the Web Services technology itself, the proposed
architecture for a COLV platform and the reasons why the latter is relevant to
the former. Section 3 describes how the COLV infrastructure was applied to the
travel agency prototype mentioned above and evaluates the outcome of such a case
study (how easy it was, what benefits were achieved, etc.). The final conclusions
are reported in section 4.

2 Technological Background and Motivation

This section introduces the relevant technological concepts involved. Some brief
introduction to Web Services is given in the first subsection, followed by a presen-
tation of the concepts and technologies behind the COLV platform (section 2.2).
The last part deals with the motivation and benefits of combining these two tech-
nologies.

2.1 Web Services

The term Web Services refers to a group of standards, which define a communi-
cation framework between Internet applications, which allows them to find other
applications and services and use them in a standard, well-defined way. As such,
Web Services concept is supposed to make application integration and composi-
tion of new services easier and more dynamic. To promote widespread acceptance,
the concept is based on open standards like SOAP, XML, WSDL and UDDI. Im-
plementation of those standards as a set of APIs contribute to hiding the imple-
mentation details of a service, allowing its remote invocation independently from
any hardware, software or programming language concerns. This allows Web Ser-
vices applications to be loosely coupled, component-oriented and cross-technology
implementations [1].

Figure 1 shows the high-level model of Web Services. In the heart of things is
UDDI (Universal Description, Discovery and Integration) that can be seen as a
repository framework where different parties can publish information about them-
selves and the descriptions for the services they offer [2]. This information is then

378 Rocha & Valetto & Paschetta & Heikkinen

publicly searchable and can be used to find suitable business partners and ser-
vices. So, in simple terms, UDDI can be viewed as analogous to phonebook “yellow
pages”. WSDL (Web Services Description Language) is an XML-based language for
describing service features which include functions of service, location of service and
method signatures for invoking the service through its programmatic interface [3].
So, in essence, WSDL is used to define and publish the interface with which the
communication is to be taking place. The actual messaging between different par-
ties is achieved with the use of SOAP (Simple Object Access Protocol) which is an
XML-based messaging protocol [4]. Simply put, SOAP acts as an enabler of remote
procedure calls for the specified interface. SOAP could be used with a variety of
underlying network protocols but at the moment HTTP is the preferred one.

Senvice i, Fi‘nding seivice and
Requester service description
V\QLJDDI registry
) Service
3. Invoking service Registry
v Service ‘%;ishing service with
Provider WSDL in UDDI registry

Fig. 1. High level model of Web Services

2.2 Continuous On-Line Validation

Continuous On-Line Validation (see for example [10] for further details) has the
goal of verifying and keeping under control at all times critical functional and
extra-functional parameters of a running software application or service (the COLV
target), by putting in place a completely automated closed control loop that is
superimposed on the target system and remains orthogonal to it.

COLV may be exploited in a variety of contexts, ranging from application moni-
toring, to on-line testing, to service optimisation, through on-the-fly (re)configurat-
ion of components and whole services, to controlled application roll out and rede-
ployment, to on-demand service assembly and coordination, and more.

COLYV relates to both application management and application coordination,
but substantially departs from the current state of the art in those disciplines: with
respect to the former, because of its stress on active control and automation thereof;
with respect to the latter because it advocates decoupling and externalising the

Continuous On-Line Validation of Web Services 379

coordination features rather than embedding them in any form within the target
application.

| system Model|

Target System (TS)

Probing Adaptation

Fig. 2. COLV platform high level architecture

The conceptual architecture for a general-purpose COLV platform that we present
is a derivation of [11] and includes a number of cooperating, loosely coupled subsys-
tems (see Figure 2). In particular: a monitoring subsystem that collects and issues
information about the behaviour of the running target system, via a set of probes
which instrument the target code; an events manager subsystem, which seman-
tically interprets and correlates the information collected by multiple probes on
multiple components, and outputs high-level notifications, thus providing gauges
for the running target system; a data communication and manipulation subsystem,
that is, a bus that transports the information among the other subsystems, while
massaging and formatting uniformly the data potentially coming from multiple het-
erogeneous probing sources; a dynamic modelling subsystem capturing and making
available knowledge about the target system, its state and its COLV-relevant char-
acteristics; an actuation subsystem, which can intervene on the target system and
components thereof, adapting or repairing its architecture, configuration and be-
haviour; a decision and coordination subsystem (a workflow manager suitable for
orchestrating system-to-system interactions) in charge of issuing and orchestrating
actuators according to codified adaptation processes that predicate on the system

380 Rocha & Valetto & Paschetta & Heikkinen

model; a report and control dashboard that allows to visualise gauges and to manage
the COLV platform.

2.3 Relevance of COLV to Web Services

Even though Web Services provide an attractive framework for creating a wide
range of services, they still lack standardised management functions, which are
obviously vital in the business domain. The service itself becomes more compelling
to the customers if some assurance about the quality of service can be given. In
this sense, customers might find it more attractive and reliable to use services that
are under continuous validation.

Crucial functional parameters like availability and response capacity can be
improved by automatically monitoring certain sensitive points of the system and,
when necessary, taking corrective measures upon their values.

In such a competitive and global environment like Web Services, in which service
providers and mediators (such as marketplaces) dynamically discover the services
they need and use them to compose a final product, quality of service (QoS) is
something which greatly depends on third parties. In order to assure its own QoS,
one must also look after the quality of the whole service chain. Logically, it is
clearly unfeasible to try to manually monitor all the web services in that chain;
COLV can therefore play an important role, since it allows to automatically notice
any problems in a single service block and take automated actions to prevent them
from further degrading the overall QoS.

With COLV, the management staff can also have a clear and uniform view in
the dashboard of the whole service chain, enabling to recognise what is happening
in the system. This decreases the response time in case something requires human
intervention and is far better than having the customer reporting something wrong
in the system and then trying to figure out what might be the point of failure.

COLV can be effectively used for other kind of management purposes as well.
Statistics about the service usage can give input to the business planning processes
to enhance the cost-effectiveness and the flow of transactions. It can also give
valuable information about how customers use the service and what sort of errors
they make. This could be used for usability enhancements.

3 Application of COLV to a Web Services System

In this section, the application of the COLV platform addressed in 2.2 to the travel
agency web service scenario is discussed, firstly by describing how that task was
accomplished and then by evaluating the achieved results.

e Ll

Continuous On-Line Validation of Web Services 381

3.1 Description

Before specifically getting to the integration of the COLV platform with the travel
agency system issue, it is convenient to better describe the latter one. Figure 3

represents its architecture.

=

Travel Agency

=

Transfers Sewice
Provider

=

Hotel Service
Provider

=

=

Car Rental Service
Provider

Cruise Sewice
Provider

=

=

Flight Sewvice
Provider

Sewice Provider

UDDI Sewice
Repository

Web Interface /
UDDI Client

Client

Sewvice Publishing
GUI 7 UDDI Client

TR

Fig. 3. Travel agency system architecture

As already mentioned in section 1, the travel agency web service does not implement
itself the functionality that will be provided to the end user, but instead sub-
hires other specialised providers in order to compose its service: hotel and flight
reservation, car rental and so on. For this reason, several types of web services
are represented in Figure 3. The travel agency web service is accessed via a web
interface, where the user may specify his request. Note that there is absolutely
no contact between the web interface (and thus the end user) and the so-called
specialised web services; only with the travel agency.

As an example of the system operation, imagine that the travel agency receives
a request for hotel and flight reservation, with a given set of parameters: dates, lo-
cation, etc. The workflow in this situation would be the following: the travel agency
web service would query the UDDI server for registered flight and hotel reserva-
tion providers, then contact each one of them to know about their availability to

e

382 Rocha & Valetto & Paschetta & Heikkinen

provide the specified service and finally send the various possibilities found to the
web interface.

The component to which the COLV platform was applied is the travel agency
service provider. In the remainder, one will refer to it as the target system (TS).

Instrumentation of Target System. The first step in the integration process
was to enable the TS to inject raw information about itself into the communica-
tion bus of the COLV platform. Among the various ways of performing this, source
code instrumentation was the one chosen: a probing technology, Active Interface
Development Environment — AIDE [6], was used to automatically add instrumen-
tation statements at the entrance and exit points of each method of some of the
TS classes, after what these classes were re-compiled.

Probes. Having the necessary classes instrumented, some code was necessary
to define which probing points would actually be inserting information into the
platform and in which form they would do it. A wide array of probes, covering
several different issues of a Web Services system, was implemented:

user login/logout notification;

success/failure in finding all the providers needed to compose service;

number of providers found in the UDDI repository, per service type;

for each contacted service provider: availability of the communication link and
WSDL description file, correctness of the WSDL, occurrence of failure on in-
vocation via SOAP, response time;

e unavailability of the UDDI server;

e success/failure on starting/stopping a Tomcat server [9].

This set of probes enables the system, for instance, to keep a record of the number
of currently logged in users and to continuously collect valuable information about
the specialised web services (flight, hotel, car rental, etc.). These probes provide
all the basic information about the TS, which then feeds the workflow engine and
the dashboard for activity visualisation.

Also, some pro-active functionality was provided to the COLV system, by devel-
oping a periodic probe which, executed with fixed time intervals, posts a “normal”
search request to the travel agency web service (flight and hotel reservation, for
instance), as if some user had manually done it in the web interface. This way, the
travel agency is triggered to contact the necessary service providers and the COLV
platform has the chance to detect any of the above-mentioned failures (unavailabil-
ity of UDDI server, WSDL not found, etc.) in that process.

R Tt e e o B e A e e e e e o e e e R e e e il 2 e o e, o ey Sy |

Continuous On-Line Validation of Web Services 383

Gauges. Based on the information coming from the referred probes, some higher-
level measures were derived:

e number of users currently logged in the system (already mentioned);

e number of search/purchase requests (absolute and average per time unit);

e rate of service providing failures of the specialised services (overall and per
service type).

Among these, only the first gauge was actually used in the on-line validation work-
flow; the remaining are business/technical measures computed for visualisation
purposes, only.

Actuators. Actuators provide means for the COLV platform to intervene in the
TS. The actuators developed were the following:

e starter/stopper of Tomcat servers;

o reconfigurator of UDDI server (changes the selected UDDI server);

e database client for collecting web services failures and response times;
e launcher of the periodic probe.

Workflow. Based on the implemented probes, gauges and actuators, it was pos-
sible to develop a set of workflow rules, which were intended to achieve one of the
main goals of the COLV platform: to correct failure situations, repair and adapt
the system on the fly and thus improve the quality of service of the running TS.
The variety of application domains already seen in the probes and actuators list
mainly, is obviously reflected here. The workflow engine was programmed to:

e launch and shut down Tomcat instances serving the travel agency web service
and web interface, according to the number of logged in users;

e switch from the currently selected UDDI server to another, when the former is
unavailable;

e collect web services failures and response times information in a database;

e schedule the triggering of the periodic probe.

3.2 Evaluation of Results

This section highlights several features of the evaluation process carried out on the
results of our case study.

384 Rocha & Valetto & Paschetta & Heikkinen

Optimisation of the Target System. Optimisation of the TS was achieved in
various different ways.

Firstly, the existence of several Tomcat servers, deploying the travel agency
web service and web interface, and intended to be launched and stopped by the
COLV platform according to the number of logged in users. Although yet not
actually configured due to time constraints, a simple Apache web server on top of
these would have been sufficient to balance the load between them and therefore
improve the response time of the system.

On a different domain, the switching between the available UDDI servers when
the currently selected is unreachable, obviously improves the availability time of
the system: the UDDI server is a vital component and without it the travel agency
is simply unable to provide any kind of functionality to the end user.

The information about the specialised web service providers continuously col-
lected over time, either when a user makes a request or when the periodic probe is
executed, enables the travel agency web service to previously evaluate the quality
of each contacted service provider (i.e., based on its past history, extrapolate what
level of QoS could be expected from a given service provider). This classification
may then be shown in the web interface or used in some (semi-) automatic providers
filtering process, prior to displaying the set of possibilities in the interface.

Learning Curve of the Platform Components. Some of the platform com-
ponents used have a high peak at the beginning of their learning curve, which then
generally tends to reasonably low values. This is the case of the tool used for TS
instrumentation, AIDE [6], and of the workflow engine, Cougaar [5]. Also, some
problems have arisen due to the “under development” state of the event processing
tool, Xues [7]. Nevertheless, its use was quite straightforward.

Performance Impact. The performance tests carried out revealed that the emis-
sion of probes in the COLV platform communication bus represents an overhead of
about 16% in the travel agency response times. This number is thought to be quite
acceptable, given the type of TS and, specially, the human nature of the systems
which make use of it. ApacheBench [8] was the tool used for these tests.

Source Lines of Code. Very few lines of source code had to be written in order
to insert the monitoring and actuating points into the T'S: around 3% of its total
lines of code for the former and 7% for the latter.

4 Conclusions

The three main subjects of this paper consist in a brief technological background
on Web Services, the major principles, components and proposed architecture for

A e e e B e e e e e e e T o s e e e e D iy |

Continuous On-Line Validation of Web Services 385

Continuous On-Line Validation and a report of how, and with which results, the
COLV platform was applied to a Web Services case study.

One has effectively assembled and put to use a prototype of an infrastructure
for continuous on-line validation, which provides enough features and flexibility
to enable its application to many different types of target systems. This platform
remains orthogonal to the system and implements a completely automated closed
control loop upon it.

Furthermore, the case study described in this paper made evident that cru-
cial functional parameters of a Web Services application, like availability, response
capacity and overall quality of service, can be put under control and improved
by using a COLV platform to automatically monitor and actuate certain sensitive
points of the system: UDDI server availability, response times and failures occurred
with third-party web services, number of logged in users, etc. All this was achieved
at a reasonably low cost and effort: probes insertion represents an overhead of 16%
in the response times of the travel agency and, in order to deploy these monitoring
points, about 3% of the total lines of code of the target system were sufficient.
However, some of the platform components initially demand significant learning
effort.

As a bottom line, we regard the use of COLV techniques as both relevant and
promising in achieving manageability, QoS assurance and — as a consequence —
business advantages in the emerging Web Services arena.

Acknowledgements

One would like to thank all the participants in Eurescom project P1108, in partic-
ular Vesa Huotari for his insights onto this paper.

References

1. Kreger, H., “Web Services Conceptual Architecture”, 2001.
http://www-3.ibm.com/software/solutions/webservices/pdf/WSCA.pdf

2. Universal Description, Discovery and Integration technical references.
http://www.uddi.org/specification.html

3. Web Services Description Language (WSDL) 1.1 — W3C Note.
http://www.w3c.org/TR/wsdl

4. Simple Object Access Protocol (SOAP) 1.1 — W3C Note.
http://www.w3c.org/TR/SOAP

5. Cognitive Agent Architecture — Cougaar. http://www.cougaar.org/

6. Active Interface Development Environment — AIDE.

http://www.cs.wpi.edu/ heineman/dasada/

XML Universal Event Service — XUES. http://www.psl.cs.columbia.edu/xues/

8. ApacheBench (Benchmarking Tool). http://www.apache.org/

o

386 Rocha & Valetto & Paschetta & Heikkinen

9. The Jakarta Project — Apache Tomcat Server. http://jakarta.apache.org/tomcat/
10. Dasada Home Page. http://www.if .afrl.af.mil/tech/programs/dasada/
11. Kaiser, G., Gross, P., Kc, G., Parekh, J., and Valetto, G., “An Approach to Autono-
mizing Legacy Systems”, in Workshop on Self-Healing, Adaptive and Self-MANaged
Systems, June 2002.

